You are here

MODIS

Mission Specification

The MODIS (MODerate Resolution Imaging Spectroradiometer) has beeen flying aboard the Terra and Aqua spacecraft since 18 December 1999 and 4 May 2002 respectively.  Terra and Aqua are part of NASA's Earth Observing Systeem comprised of satellites designed for the long observations of the Earth's oceans, atmoshere, biosphere and land surfaces of the Earth.
MODIS implements a rotating scan mirror measuring 36 bandwidths from 0.405 to 14.385µm.  Temperatures measured include sea surface, atmosphere, cloud and land temperatures.  Other parameters measured are ocean color, phytoplankton, aeresols, water vapor, cloud altitudes and water vapor.

Design Concept
Design concept from the official NASA MODIS web site at the Goddard Space Flight Center at http://modis.gsfc.nasa.gov/about/design.phpThe MODIS instrument provides high radiometric sensitivity (12 bit) in 36 spectral bands ranging in wavelength from 0.4 µm to 14.4 µm. The responses are custom tailored to the individual needs of the user community and provide exceptionally low out-of-band response. Two bands are imaged at a nominal resolution of 250 m at nadir, with five bands at 500 m, and the remaining 29 bands at 1 km. A ±55-degree scanning pattern at the EOS orbit of 705 km achieves a 2,330-km swath and provides global coverage every one to two days.

The Scan Mirror Assembly uses a continuously rotating double-sided scan mirror to scan ±55-degrees and is driven by a motor encoder built to operate at 100 percent duty cycle throughout the 6-year instrument design life. The optical system consists of a two-mirror off-axis afocal telescope, which directs energy to four refractive objective assemblies; one for each of the VIS, NIR, SWIR/MWIR and LWIR spectral regions to cover a total spectral range of 0.4 to 14.4 µm.

A high-performance passive radiative cooler provides cooling to 83K for the 20 infrared spectral bands on two HgCdTe Focal Plane Assemblies (FPAs). Novel photodiode-silicon readout technology for the visible and near infrared provide unsurpassed quantum efficiency and low-noise readout with exceptional dynamic range. Analog programmable gain and offset and FPA clock and bias electronics are located near the FPAs in two dedicated electronics modules, the Space-viewing Analog Module (SAM) and the Forward-viewing Analog Module (FAM) . A third module, the Main Electronics Module (MEM) provides power, control systems, command and telemetry, and calibration electronics.

The system also includes four on-board calibrators as well as a view to space: a Solar Diffuser (SD), a v-groove Blackbody (BB), a Spectroradiometric calibration assembly (SRCA), and a Solar Diffuser Stability Monitor (SDSM).

The first MODIS Flight Instrument, ProtoFlight Model or PFM, is integrated on the Terra (EOS AM-1) spacecraft. Terra successfully launched on December 18, 1999. The second MODIS flight instrument, Flight Model 1 or FM1, is inegrated on the Aqua (EOS PM-1) spacecraft; it was successfully launched on May 4, 2002. These MODIS instruments will offer an unprecedented look at terrestrial, atmospheric, and ocean phenomenology for a wide and diverse community of users throughout the world.
(Design concept from the official NASA MODIS web site at the Goddard Space Flight Center at http://modis.gsfc.nasa.gov/about/design.php)

Specifications
Primary Use Band Bandwidth1 Spectral
Radiance2
Required
SNR3
Land/Cloud/Aerosols
Boundaries
1 620 - 670 21.8 128
2 841 - 876 24.7 201
Land/Cloud/Aerosols
Properties
3 459 - 479 35.3 243
4 545 - 565 29.0 228
5 1230 - 1250 5.4 74
6 1628 - 1652 7.3 275
7 2105 - 2155 1.0 110
Ocean Color/
Phytoplankton/
Biogeochemistry
8 405 - 420 44.9 880
9 438 - 448 41.9 838
10 483 - 493 32.1 802
11 526 - 536 27.9 754
12 546 - 556 21.0 750
13 662 - 672 9.5 910
14 673 - 683 8.7 1087
15 743 - 753 10.2 586
16 862 - 877 6.2 516
Atmospheric
Water Vapor
17 890 - 920 10.0 167
18 931 - 941 3.6 57
19 915 - 965 15.0 250

Primary Use Band Bandwidth1 Spectral
Radiance2
Required
NE[delta]T(K)4
Surface/Cloud
Temperature
20 3.660 - 3.840 0.45(300K) 0.05
21 3.929 - 3.989 2.38(335K) 2.00
22 3.929 - 3.989 0.67(300K) 0.07
23 4.020 - 4.080 0.79(300K) 0.07
Atmospheric
Temperature
24 4.433 - 4.498 0.17(250K) 0.25
25 4.482 - 4.549 0.59(275K) 0.25
Cirrus Clouds
Water Vapor
26 1.360 - 1.390 6.00 150(SNR)
27 6.535 - 6.895 1.16(240K) 0.25
28 7.175 - 7.475 2.18(250K) 0.25
Cloud Properties 29 8.400 - 8.700 9.58(300K) 0.05
Ozone 30 9.580 - 9.880 3.69(250K) 0.25
Surface/Cloud
Temperature
31 10.780 - 11.280 9.55(300K) 0.05
32 11.770 - 12.270 8.94(300K) 0.05
Cloud Top
Altitude
33 13.185 - 13.485 4.52(260K) 0.25
34 13.485 - 13.785 3.76(250K) 0.25
35 13.785 - 14.085 3.11(240K) 0.25
36 14.085 - 14.385 2.08(220K) 0.35

1 Bands 1 to 19 are in nm; Bands 20 to 36 are in µm
2 Spectral Radiance values are (W/m2 -µm-sr)
3 SNR = Signal-to-noise ratio
4 NE(delta)T = Noise-equivalent temperature difference

Note: Performance goal is 30-40% better than required