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 
Abstract— Geophysical Model Functions (GMFs) are 

developed which map the Level 1 observables made by the 
Cyclone Global Navigation Satellite System (CYGNSS) radar 
receivers to ocean surface wind speed. The observables are: 1) 
the normalized bistatic radar cross section (o) of the ocean 
surface; and 2) the slope of the leading edge of the radar return 
pulse scattered by the ocean surface. GMFs are empirically 
derived from measurements by CYGNSS which are nearly 
coincident with independent estimates of the 10 meter referenced 
ocean surface wind speed (u10). Two different sources of “ground 
truth” wind speed are considered – numerical weather prediction 
model outputs and measurements by the NOAA P-3 hurricane 
hunter during eyewall penetrations of major hurricanes. The 
GMFs derived in each case have significant differences that are 
believed to result from differences in the state of development of 
the long wave portion of the ocean surface height spectrum that 
result from characteristic differences in wave age and fetch 
length near vs. far from a hurricane. 
 

Index Terms— CYGNSS, Geophysical Model Function, GNSS-
R, Ocean Surface Wind Speed 
 

I. INTRODUCTION 

CEAN surface wind speed can be estimated from 
spaceborne observations made by microwave radiometers 

and radars. Radiometers measure brightness temperature, from 
which a surface emissivity observable is derived. The 
sensitivity to wind results primarily from the generation of 
foam on the ocean surface, which has a significantly different 
emissivity than that of water alone [1], [2], [3]. The estimation 
of wind speed from the emissivity observable typically relies 
on a geophysical model function (GMF) which relates the two. 
GMFs can either be developed from a “first principles” 
analysis of the electromagnetics or, what is more common in 
practice, they can be constructed empirically by relating a 
large population of observations to near-coincident 
measurements of the wind speed made by some other means. 
Radars measure scattered transmitted signals, from which 
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observables related to the scattering properties of the surface 
are derived. The sensitivity to wind results primarily from the 
roughening of the ocean surface, which alters both the radar 
scattering cross section and the shape of the scattered radar 
waveform relative to that for a smooth water surface. A GMF 
approach is also often used with radar wind sensors. A GMF 
relating wind speed to the scattering cross section observable 
has been used by ocean scatterometers [4], [5]. A correction to 
such a GMF has been considered for ocean altimeters using 
additional information about the significant wave height of the 
ocean contained in the shape of the leading edge of the radar 
return waveform [6], [7]. 

Both scatterometers and altimeters are examples of 
monostatic radars, which carry a co-located transmitter and 
receiver and measure the backscatter signal. Another type of 
radar is bistatic, with transmitter and receiver in different 
locations. Global Navigation Satellite System-Reflectometry 
(GNSS-R) instruments, which make use of Global Positioning 
System (GPS) or other navigation signals as their transmitters, 
are examples of bistatic radars. Their preferred bistatic 
measurement geometry is quasi-specular forward scattering 
because the scattering cross section tends to be largest in that 
direction. Examples of spaceborne GNSS-R instruments 
which have successfully measured ocean surface winds are the 
UK Disaster Monitoring Constellation (UK-DMC) [8], [9] and 
TechDemoSat-1 (TDS-1) [10], [11], [12]. These missions 
have reported their wind speed retrieval performance in the 
literature, but not the details of the GMFs used by their 
retrieval algorithms.  In addition, both UK-DMC and TDS-1 
make measurements at lower (near nadir) incidence angles 
only, due to the orientation of their receive antenna beams, so 
their GMFs would be restricted to those angles. Sensitivity to 
hurricane force winds has also been demonstrated by TDS-1 
[13], but a corresponding high wind GMF has not yet been 
reported. GNSS-R instruments have also flown on aircraft to 
measure ocean surface winds [14], [15].  

GNSS-R radar receivers measure the scattering cross 
section of the ocean surface at and in a region surrounding the 
specular reflection point. The measurements are localized on 
the Earth surface using a combination of time delay and 
Doppler frequency filters to form a Delay Doppler Map 
(DDM) of the surface [16]. The time delay filter acts similarly 
as the range gating function in conventional monostatic radars 
to isolate regions on the surface with a particular time-of-flight 
from the transmitter to the receiver. The Doppler filter 
similarly isolates regions on the surface at which the GPS 
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signal experiences a particular Doppler shift. Numerous 
observables can be derived from a DDM for use in wind speed 
retrievals. For airborne applications, wind speed GMFs have 
been developed based on the relative strength of the scattering 
at and away from the specular point [17]. This makes use of 
the fact that specular scattering tends to decrease while diffuse 
scattering, away from the specular point, tends to increase as 
wind speed and surface roughness increase. This approach has 
the advantage that the observable is a ratio between two 
received signal strengths, so ancillary measurement 
parameters such as the strength of the GPS transmitted signal 
and the gain of the receive antenna, largely cancel out. For 
spaceborne applications, it is problematic to rely on this ratio-
based approach because differences in time delay and Doppler 
shift correspond to much greater differences in distance from 
the specular point at satellite altitudes and orbital velocities. 
As a result, use of such a ratio approach could result in an 
effective spatial resolution of 100s of km for the derived wind 
speed, rather than a few km in the case of aircraft [18]. In 
order to maintain a spatial resolution of 10s of km, spaceborne 
wind speed retrievals tend to rely only on DDM measurements 
near the specular point [19].  

The Cyclone Global Navigation Satellite System 
(CYGNSS) consists of a constellation of eight small satellites 
deployed in a common 520 km altitude, 35o inclination Earth 
orbit. The mission is intended to make frequent measurements 
of ocean surface wind speed in all precipitating conditions, in 
particular in and near tropical cyclones [20]. Each satellite 
carries a GNSS-R radar receiver, tuned to the GPS L1 signal 
at 1.575 GHz, which continuously generates DDMs of surface 
reflections from specular points within the footprints of its two 
downward pointing receive antenna beams [21]. The receivers 
are a third generation version of the Space GPS Receiver 
Remote Sensing Instrument (SG-ReSI) product line developed 
by Surrey Satellite Technology Ltd. over the past ~15 years 
[22]. The two CYGNSS receive antenna beams are pointed 
cross track to the direction of orbital motion.  Each antenna is 
a 2x3 element phased array with a fan beam antenna pattern. 
The patterns cover incidence angles of approximately 5–65 
deg and azimuth angles of 75–105 deg and 255–285 deg on 
the port and starboard sides of the sub-satellite point, 
respectively. DDMs are processed into two observables which 
are used for wind speed retrieval. One is the normalized 
scattering cross section (o) averaged over an area roughly 25 
km in diameter centered on the specular point. The other is the 
leading edge of the slope of the radar return waveform (LES). 
Both observables are defined in [23], which describes the 
wind speed retrieval algorithm used by the CYGNSS mission 
and develops an initial, pre-launch, GMF based on simulated 
measurements. 
An empirical GMF is developed here for use by the CYGNSS 
wind speed retrieval algorithm. It uses near-coincident 
matchups between the CYGNSS observables and independent 
estimates of the ocean surface wind speed referenced to a 10 
m height (u10).  The independent wind speeds are provided by 
Numerical Weather Prediction (NWP) models at low to 
moderate wind speeds and by instruments on the NOAA P-3 

hurricane hunter aircraft at higher wind speeds in tropical 
cyclones [24]. The GMF developed here is distinct from those 
reported previously in two primary respects.  With previous 
airborne applications, the observables were either uncalibrated 
Signal-to-Noise Ratio (SNR) measurements of the received 
GPS signal, or normalized measures of the extent of diffuse 
scattering away from the specular point. The GMF developed 
here instead uses as its observables the absolutely calibrated 
o of the surface in the vicinity of the specular and the LES. 
With previous spaceborne applications, coincident matchup 
measurements were not available at hurricane force wind 
speeds from the NOAA P-3 hurricane hunter aircraft. Their 
availability allows for the extension of the GMF to 
significantly higher wind speeds than has been reported 
previously. The GMF development is presented in two stages. 
First, a Fully Developed Seas (FDS) version is developed 
based on matchups with NWP model outputs at low to 
moderate wind speeds. Then a Young Seas/Limited Fetch 
(YSLF) version is presented based on matchups with 
measurements by hurricane hunter aircraft during flights 
through several 2017 Atlantic hurricanes. 

II. FULLY DEVELOPED SEAS GMF 

The FDS GMF is based on an empirical pairing of 
CYGNSS Level 1 (L1) observations of o and LES with the 
10 meter referenced ocean surface wind speed(u10), as 
determined by Numerical Weather Prediction (NWP) models. 
A large population of these pairings is partitioned into “bins” 
with respect to u10 and the incidence angle (inc) of the 
observation. The average values of u10 and the L1 observable 
within a bin are paired together as one discrete sample of the 
GMF for that observable. An algebraic parametric model is 
then fit to the discrete GMF samples to produce a 
continuously varying GMF which is used by the Level 2 (L2) 
wind speed retrieval algorithm. 

A. Description of Training Data Set: ECMWF & GDAS 
matchups 

Matchup NWP data used to train the empirical GMF are the 
10 meter referenced ocean surface wind speeds provided by 
the European Centre for Medium-Range Weather Forecasts 
(ECMWF) and the Global Data Assimilation System (GDAS). 
ECMWF is an independent intergovernmental organization 
supported by 34 countries to produce current weather forecasts 
and climate reanalysis products and to perform related 
research activities [25]. The reanalysis products are used here. 
GDAS is a system operated by the NOAA National Centers 
for Environmental Information to organize a variety of 
surface, balloon, aircraft and spaceborne observations into a 
gridded model space for use by NOAA’s global forecast 
system [26]. ECMWF and GDAS use a 0.25 deg and 1.0 deg 
reporting interval, respectively. Bilinear interpolation in space 
and linear interpolation in time of the reported NWP products 
are used to estimate u10 at the times and locations of the 
CYGNSS specular point observations.   

A merged “ground truth” u10 product is used which 
combines model outputs by both ECMWF and GDAS. For 
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wind speeds below 20 m/s, the ECMWF value for u10 is used 
alone. For wind speeds between 20 and 25 m/s, the arithmetic 
average of ECMWF and GDAS wind speeds is used. For wind 
speeds above 25 m/s, the GDAS value alone is used. This 
merged-product approach is used to accentuate the better 
accuracy of ECMWF at lower wind speeds and of GDAS at 
higher wind speeds [27].  In addition, matchups are only used 
if the u10 values for ECMWF and GDAS differ by no more 
than 3 m/s.  

Examples of the training data set are shown in Fig. 1 for the 
o observable at three values of inc. Shown are logarithmic 
density scatterplots of the merged ground truth u10 values vs. 
the observable. The general trend is for the scattering cross 
section to decrease as wind speed increases, as expected for 
bistatic forward scattering from a wind-roughened ocean 
surface. 

B. Binning of matchups for discrete, empirical GMF 

The CYGNSS L1 observables are filtered prior to use as 
part of the training used to derive the empirical GMF. The 
filters are for reasons of quality control. Specifically: 

• The Doppler coordinate of the specular point in the DDM 
is required to be greater than the lowest possible value in 
the map and less than the highest possible value. This 
discards cases where it is at the edge of the map and the 
computed Doppler coordinate may be incorrect. In 
practice, this happens less than 0.1% of the time. 

• The delay coordinate of the specular point in the DDM is 
required to be greater than the lowest possible value in the 
map and less than the highest possible value. This 
discards cases where it is at the edge of the map and the 
computed delay coordinate may be incorrect. In practice, 
this happens less than 0.1% of the time. 

• All NaN values of the observables are discarded. This 
eliminates samples for which noise in the calibration data 
can produce non-physical calibrated L1 data. In practice, 
this happens less than 0.1% of the time. 

• The observables are required to be non-negative. This 
eliminates samples for which noise in the calibration data 
can produce non-physical calibrated L1 data, as well as 
measurements which are very close to the measurement 
noise floor. In practice, this happens less than 0.1% of the 
time. 

• All measurements are discarded for which the spacecraft 
star tracker is not tracking due to solar contamination. 
Some reported spacecraft attitude data during sun outages 
are known to be erroneous (with inaccuracies greater than 
the error allocation in the L1 calibration algorithm for 
attitude knowledge). This only occurs when the outage is 
especially long, but all sun outage data are flagged and 
removed as a precaution.  In practice, this happens less 
than 1% of the time. 

• All data with a CYGNSS Range Corrected Gain (RCG) of 
less than 10 are discarded. RCG is a composite measure 
of receive signal strength that combines the receive 
antenna gain in the direction of the specular point with the 
R-2 propagation range loss from the GPS transmitter to the 
specular point and from the specular point to the 
CYGNSS receiver. In practice, data with an RCG > ~1 
can typically produce useful wind speed retrievals, but 
only data with a higher SNR are used to train the 
empirical GMF. 

• All observations resulting from transmissions by the GPS 
Block Type II-F satellites are discarded. Block II-F is the 
newest family of GPS satellites, and the one for which the 
CYGNSS team has the least information about its 
transmitter antenna gain pattern. There are currently 8 II-
F satellites in the constellation, out of 31 total in 
operation.  

 
The behavior of the empirical GMF as a function of u10 and 

inc is smoothed by allowing sequential bins in either 
dimension to overlap. In the incidence angle dimension, the 
bin center is incremented every 1 deg from 1 to 70 deg and all 

Fig. 1. Log(density) scatterplots of o measured by CYGNSS vs. ground truth
u10 at incidence angles of 15o (top), 30o (mid) and 45o (bot). The color scale
is the log10 of the number density of points. 
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samples are included within +/- 2.0 deg of the center. In the 
wind speed dimension, the bin center is incremented every 0.1 
m/s from 0.05 to 34.95 m/s and all samples are included 
within a variable bin width that varies according to the 
population density of samples as a function of wind speed. 
Specifically, the bin widths used are: 

• +/- 0.4 m/s (u10 < 2 m/s) 
• +/- 0.3 m/s (2 < u10 < 5 m/s) 
• +/- 0.2 m/s (5 < u10 < 9 m/s) 
• +/- 0.4 m/s (9 < u10 < 11 m/s) 
• +/- 0.6 m/s (11 < u10 < 14 m/s) 
• +/- 0.8 m/s (14 < u10 < 17 m/s) 
• +/- 1.0 m/s (17 < u10) 
A weighted average of all samples within twice these bin 

width ranges is performed. Samples within +/- one bin width 
of the bin center are given twice as much weight as those 
between 1xbinwidth and 2xbinwidth from the bin center. This 
tapered weighting approach reduces the introduction of 
artificial higher frequency components into the GMF than are 
present in the original discrete empirical samples. 

The GMF is also forced to be monotonic as a function of 
wind speed. The GMF value at 7.05 m/s is computed first 
(since this is generally the most probable wind speed and so 
has the largest population of samples in its near vicinity). 
GMF values are then sequentially computed in steps of 0.1 
m/s above and below this value using the averaging scheme 
described above. However, values are allowed to either 
decrease or stay the same with increasing wind speed, and 
increase or stay the same with decreasing wind speed. This 

limits the introduction of non-physical variations into the 
GMF due to undersampling of certain parts of the (wind 
speed, incidence angle) state space.  In practice, this 
monotonicity algorithm is only enforced at the highest and 
lowest wind speeds in the population, where the sampling 
density tends to be lowest. 

Examples of the empirical GMFs for both observables (o 
and LES) at inc = 30 deg, overlaid on the training data from 
which they were derived, are shown in Fig. 2. Over the central 
range of wind speeds where most of the samples occur, the 
GMF agrees with the highest density part of the scatter plot. 
At the highest and lowest wind speeds, the lower size of the 
population makes the behavior of the GMF more susceptible 
to errors. 

Examples of the empirical GMFs for both L1 observables 
across a range of incidence angles are shown in Fig. 3. The 
general dependence of observable on wind speed is consistent 
across all incidence angles. The dependence on incidence 
angle at a given wind speed is also consistent. Note that the 
slope of the GMF (dObs/du10) is highest at low wind speeds, 
indicating that wind speed retrievals will, in general, perform 
better and be less susceptible to measurement noise and 
calibration errors at the lower wind speeds. The general 
behavior of the empirical o GMF, both as a function of wind 
speed and of incidence angle, is consistent with scattering 
model predictions based on the first order small slope 
approximation method [28], [29]. 

Fig. 2. Empirical GMFs for the two Level 1 observables, o or DDMA (top)
and LES (bot), at inc = 30o, overlaid on log(density) scatter plots of the
training data from which they were derived. 

Fig. 3. Empirical GMFs for o (top) and LES (bot) at inc=10 15, …,55o. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
 
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 

5 

C. Parametric model for continuous, empirical GMF 

An algebraic parametric model is fit in a least-squares sense 
to the empirical GMF in order to populate the lookup tables 
used by the CYGNSS Level 2 wind speed retrieval algorithm. 
This process smooths across some of the behavior in the 
empirical GMF that is related to measurement noise and 
insufficient number of samples in the training set. It also 
interpolates across portions of (wind speed, incidence angle) 
state space that are not sufficiently populated by the training 
set. The parametric model assumed for the GMF is divided 
into two portions based on the observed behavior of the 
empirical GMF as a function of wind speed. At low wind 
speeds, a model is assumed of the form  

 

ݏܾܱ ൌ 	ܽ଴ ൅ ܽଵିݑଵ ൅	ܽଶିݑଶ                  (1) 
 

where Obs is the Level 1 CYGNSS observable (either o or 
LES), u is the ground truth u10 wind speed, and ai are the 
dependent parameters of the model. At high wind speeds, a 
model is assumed of the form 
 

ݏܾܱ ൌ 	ܾ଴ ൅ ܾଵݑ ൅ ܾଶݑଶ                       (2) 
 

where bi are the dependent parameters of the model. The 
population of samples used to train these two models is 
different for each observable. For o, samples at wind speeds 
below 15 m/s are used to determine a0-2 and samples above 15 
m/s are used to determine b0-2. For the LES observable, 

samples below and above 10 m/s are used. The actual 
transition from one parametric model to the other in the GMF 
occurs near, but not exactly at, these wind speed values. A 
transition point is chosen where the first derivatives of the two 
models are equal (i.e. a spline fit). The model parameters and 
the spline fit transition point are chosen independently at each 
incidence angle.  

Examples of the parametric model GMF, together with the 
empirical GMF from which they are obtained, are shown in 
Fig. 4. At the lowest wind speeds (below ~2 m/s), the 
empirical and parameteric models tend to deviate (more so for 
the LES observable). The sensitivity of the LES observable to 
wind speed drops to zero at wind speeds above ~18 m/s, 
whereas the o observable retains its sensitivity up to wind 
speeds of ~30 m/s.  

Examples of the parametric model GMFs for both 
observables and over a range of incidence angles are shown in 
Fig. 5. The truncation of the GMF at high wind speeds results 
from the limitations in the dynamic range of wind speeds 
included in the training data set.  

D. Validation and performance characterization 

As a means of assessing whether the derived GMFs 
properly represent the response of the Level 1 observables to 
changes in ocean surface wind speed, they are used as the 
basis for a wind speed retrieval algorithm. The algorithm 
inverts the GMF to estimate wind speed given the measured 
observable [19]. The error in this retrieval algorithm 
(groundtruth – retrieval) is considered as a function of the two 

Fig. 4. Discrete empirical GMFs (symbols) and continuous parametric
models (solid lines) derived from them, for the two L1 observables o (top)
and LES (bot), and for inc = 10, 30, 50o. 

Fig. 5. Parametric model FDS GMF for the Level 1 observables o (top) and
LES (bot) at incidence angles of 10, 15, …, 55 deg. The dependence on
incidence angle is more pronounced in the case of the o (DDMA)
observable. The maximum wind speed at which the observable is sensitive to
changes in wind speed is also higher for o than for the LES observable. 
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coordinates of the GMF, incidence angle and wind speed. 
Note that this co;mparison uses the same population of data as 
was used to train the GMFs and so should be considered a test 
of internal consistency in the generation of the GMFs. A more 
independent assessment of retrieval performance is presented 
in [30].  

The dependence of retrieval error on incidence angle is 
shown in Fig. 6. The o-based retrieval on the left shows a 
positive statistical retrieval bias (retrieved values are larger 
than groundtruth more often than they are smaller). The LES-
based retrieval on the right shows a more unbiased distribution 
of retrieval errors. Notably, in terms of incidence angle 
dependence, the highest density of retrieval errors occurs near 
an error of zero and this is true at all incidence angles and for 

both L1 observables. 
The dependence of retrieval error on the ground truth wind 

speed is shown in Fig. 7. Significant positive retrieval biases 
(retrieved values are larger than groundtruth more often than 
they are smaller) can be seen at ground truth wind speeds of 5-
15 m/s for o and at 3-10 m/s for LES. A possible cause for 
this behavior, and a corresponding mitigation strategy, are 
considered next.  

Fig. 8 shows the dependence of retrieval error on the 
difference between the wind speeds retrieved using the two L1 
observables. Larger retrieval errors tend to be highly 
correlated with the difference between the two retrievals. The 
large positive bias in retrievals based on the o observable 
tends to coincide with cases where the o retrieval is much 
larger than that from the LES observable. Alternately, samples 
for which the o retrieval is much smaller than the LES 
retrieval tend to coincide with large positive biases in the LES 
retrieval. The root cause of this behavior may be related to the 
fact that the two observables respond to different aspects of 
the sea state, only part of which is forced by local wind speed. 
If, for example, they respond in different ways to the longer 
swell portion of the surface wave spectrum, this could explain 
their different dependence on the retrieval error. One 
hypothesis is that young sea conditions (not fully developed) 
may coincide with instances where the two retrievals have 
significant differences.  

In terms of mitigation of this behavior, and improvement in 
the overall wind speed retrieval performance, the dependence 
of retrieval error on the difference between the o and LES 
retrieved wind speeds can be used as a quality control (Q/C) 
filter. This is illustrated in Fig. 9, which shows the dependence 
of the retrieved Minimum Variance (MV) wind speed on the 
difference. The MV retrieval is a weighted average of the o 
and LES retrievals, weighted by the inverse variance of the 
error in wind speed retrieved by each of the individual 

 
Fig. 6. Log(density) scatter plot of wind speed retrieval error vs. incidence
angle for retrievals using the o (top) and LES (bot) Level 1 observable.
There is no significant dependence on incidence angle.  

 
Fig. 7. Log(density) scatter plot of wind speed retrieval error vs. ground
truth wind speed for retrievals using the o (top) and LES (bot) L1
observable. 

 
Fig. 8. Log(density) scatter plot of wind speed retrieval error using the o

(top) and LES (bot) L1 observable vs. the difference between the two
retrieved wind speeds. 
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observables [19]. Large errors in the MV retrieval can be seen 
in Fig. 9 to correlate with large differences between the o and 
LES retrievals. A simple Q/C filter could, for example, 
exclude all retrievals for which the difference is greater than 6 
m/s. This filter threshold is illustrated in Fig. 9. In practice, 
this Q/C filter discards approximately 4% of the samples.  

The effectiveness of the Q/C filter, and the overall quality 
of the MV retrieval algorithm, is illustrated in Fig. 10, which 
compares the groundtruth and retrieved wind speeds as a 
scatter plot and by their RMS and mean difference. The large 
retrieval biases evident in Fig. 7 have been largely removed by 
this Q/C filter. Fig. 10 also illustrates the performance of the 
wind speed retrieval beow 20 m/s. The RMS difference is ~2 

m/s at low wind speeds and grows to ~4 m/s at 20 m/s. 

III. YOUNG SEAS/LIMITED FETCH GMF 

The YSLF GMF is based on matchups between 
measurements by CYGNSS made during overpasses of 2017 
Atlantic hurricanes and near-coincident ocean surface wind 
speed measurements made by the Stepped Frequency 
Microwave Radiometer (SFMR) on NOAA P-3 hurricane 
hunter aircraft [24]. These matchups demonstrate a fairly 
consistent sensitivity of the CYGNSS L1 observables to 
changes in wind speed at high (30-60 m/s) levels. The mean 
high wind sensitivities (do/du10 and dLES/du10) are used to 
define a YSLF GMF that is consistent with the fully 
developed seas GMF at low wind speeds but whose high wind 
behavior is replaced by the YSLF sensitivities derived from 
the SFMR matchups over hurricanes. 

A. Description of Training Data Set: NOAA P-3 SFMR 
matchups 

Twenty-five (25) coincident overpasses of hurricanes 
between CYGNSS and NOAA P-3 aircraft occurred during 
the 2017 Atlantic hurricane season. Coincidence was defined 
by locating the aircraft ground track during one of its eyewall 
penetrations that was closest to a CYGNSS specular point 
track for that overpass and requiring that they occurred within 
60 min of one another.  The 25 cases identified in this way 
include overpasses of Hurricanes Harvey, Irma and Maria. 
The maximum SFMR wind speed recorded across all cases 
was 73 m/s and the range of CYGNSS incidence angles 
covered 13-67 deg. Histograms of the SFMR u10, CYGNSS 
inc, and CYGNSS o measured across all 25 overpasses are 
shown in Fig. 11.  

 
Fig. 9. Log(density) scatter plot of minimum variance wind speed retrieval
error vs. the difference between the wind speeds retrieved by the two
individual L1 observables. A Q/C filter that discards retrievals with
differences greater than 6 m/s (shown by the two dashed red lines) will
eliminate the circled regions with large retrieval errors. 

 

 
Fig. 10. Log(density) scatter plot of groundtruth vs. MV retrieved wind speed
(top) with black-dashed line of 1:1 agreement, and of RMS and mean
retrieval error vs. groundtruth wind speed (bot).  

 
Fig. 11. Histograms of the SFMR u10, CYGNSS inc, and CYGNSS o

measured across all 25 coincident hurricane overpasses that are used to
determine the high wind portion of the limited fetch GMF. 
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An example of one of the coincident overpasses, occurring 
over Hurricane Maria on 24 Sep 2017, is shown in Fig. 12.  
The CYGNSS measurement of o can be seen to decrease 
roughly monotonically as the wind speed measured by SFMR 
increases. 

B. Regression of coincident overpasses to determine GMF 
sensitivity (do /du10) 

For each of the 25 coincident hurricane overpasses, the L1 
observables are related to the coincident SFMR wind speeds 
by linear regression. One example of this is shown in Fig. 13, 
for the case illustrated in Fig. 12. The slope of the linear 
regression is taken as the sensitivity of the observable to 
changes in wind speed.  

Fig. 14 shows the slope of the linear regression determined 
for each of the 25 cases and for both L1 observables. The set 
of all 25 regression slopes is averaged together to determine 
the sensitivity of the YSLF GMF. The resulting sensitivity 
factors are  

do /du10 = -0.1880 (m/s)-1 
dLES/du10 = -0.0929 (m/s)-1                     (3) 

C. Parametric model with hi/lo wind partitions 

As with the fully developed seas GMF, an algebraic 
parametric model is assumed for the YSLF GMF. The 
parametric model is again divided into low and high wind 
speed portions. At low wind speeds, a similar model is 
assumed as for the FDS GMF  

 

ݏܾܱ ൌ 	ܽ଴ ൅ ܽଵିݑଵ ൅	ܽଶିݑଶ                 (4) 
 

and the a0-2 coefficients are again determined using the fully 
developed seas training set. At high wind speeds, a linear 
model is assumed  
 

ݏܾܱ ൌ 	 ܿ଴ ൅ ܿଵ(5)                              ݑ 
 

with slope coefficient (c1) given by eqn. (3) as determined 
from the linear regression of hurricane overpass matchups. 
The transition between low and high wind speed segments is 
again selected as the wind speed where the first derivatives of 
the two models are equal. The low wind speed model 
parameters and the spline fit transition point are chosen 

 

 
Fig. 12. Coincident CYGNSS/P-3 overpass of Hurricane Maria on 24 Sep
2017 at 1817 UTC. (top) The P-3 ground track is shown in black. The
CYGNSS specular point track is shown in red. The colored portion of the P-3
track is color coded by their time difference. (bot) CYGNSS L1 o (labeled
NBRCS) and SFMR wind speed measured along the coincident track. 

 

 
Fig. 13. Linear regression of CYGNSS L1 o and LES observables against
SFMR wind speed for Hurricane Maria overpass on 24 Sep 2017 at 1817
UTC. The slope of the linear regression is noted in each plot. 

 
Fig. 14. Slope of the linear regression determined from each of the 25
coincident hurricane overpasses for both the o (top) and LES (bot) L1
observable. 
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independently at each incidence angle. A common high wind 
speed sensitivity is assumed for all incidence angles, since 
there was no clear dependence of sensitivity on incidence 
angle evident in the coincident hurricane overpass data. 

Examples of the YSLF GMF are shown in Fig. 15, together 
with the FDS GMFs at the same incidence angles. Several 
characteristics are noteworthy. The models agree at low wind 
speeds (by design). At wind speeds in the range 15-25 m/s, the 
sensitivity (dObs/du10) is markedly stronger in the FDS case. 
The limiting wind speed, above which the value of the 
observable is zero, is much higher in the YSLF case. And 
finally, there is a range of values of both observables over 

which two different wind speeds correspond to the same 
measurement. This represents an ill-posed, multi-valued 
inversion problem. In practice, it may be necessary to have 
some a priori knowledge about the fetch or sea age of the 
conditions under observation in order to uniquely convert L1 
observable measurements to wind speed. 

The multi-valued nature of the mapping from L1 observable 
to wind speed is illustrated in Fig. 16. The FDS and YSLF 
GMFs agree below ~12 m/s. Above 12 m/s, the behavior of 
the FDS GMF is derived from matchups with ECMWF and 
GDAS away from major storms. The behavior of the YSLF 
GMF above 12 m/s is derived from matchups with P-3 SFMR 
wind speed measurements in major storms. The YSLF GMFs 
for both L1 observables are shown in Fig. 17.  

D. Validation and performance characterization; 
repeatability of limited fetch conditions 

The adequacy of the YSLF GMFs to represent the response 
of the Level 1 observables to changes in ocean surface wind 
speed in hurricanes is assessed by using it in a wind speed 
retrieval algorithm. The algorithm inverts the GMF to estimate 
wind speed given the measured observable, in the same 
manner as the previous assessment for the FDS GMF. In this 
case, given the limited number of coincident hurricane 
overpasses that are available, individual case studies are 
considered rather than overall performance statistics. The 
wind speed retrieval performance for each hurricane overpass 
is evaluated using CYGNSS/P-3 matchups similar to the one 
shown in Fig. 12. The retrieval results for four overpasses are 
shown in Figs. 18a-d, presented as a time series of the 
CYGNSS retrieved wind speed overlaid with the nearest 
SFMR and merged ECMWF&GDAS wind speeds.  

In general, the lower wind speed portions of the CYGNSS 
tracks agree well with the ECMWF&GDAS wind speeds and 
the high wind speed portions near the storm center agree with 
the SFMR wind speeds. Note that the CYGNSS retrievals at 

 
 

 
Fig. 15. Young Seas/Limited Fetch GMF (thin lines) for o (left) and LES
(right), together with the Fully Developed Seas GMF (thick lines), at inc = 
10, 30, 50o. The models agree at low wind speeds but have very different high
wind speed dependencies. 

 
Fig. 16. Side-by-side comparison of GMFs for o that are appropriate for Fully Developed Seas (left) and Young Seas/Limited Fetch conditions in hurricanes
(right). The region of the L1 observable bounded by the two dashed green lines maps onto two distinct wind speeds from the same value of o. The wind speed
marked by the vertical blue line (12 m/s) represents the highest wind speed with a common mapping by both GMFs. 
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the highest wind speed levels tend to be noisier, as can be 
expected given the lower slope of the GMF at high wind 
speeds. The wind speed retrieved by CYGNSS using the FDS 
GMF is also included in Fig 18 for comparison. The CYGNSS 
YSLF and FDS winds agree closely at low wind speed speeds, 
which is consistent with their very similar GMFs at low winds. 
At high wind speeds, the YSLF retrievals are higher than the 
FDS ones, which is also consistent with the higher values for 
 in the YSLF than the FDS GMF at the same wind speed 
(see Fig. 16). Occasional drop-outs in the reported FDS winds 
are evident in Fig. 18 near the storm center. They result from 
quality control filters which flag the retrievals as unreliable 
when the individual FDS DDMA and LES retrievals differ by 
more than 6 m/s. 

IV. DISCUSSION 

The dependence of CYGNSS measurements on the local 
wind speed at the location of the measurement is multi-valued 
in the sense that different wind speeds can result in the same 
values for o and LES. The relationship appears to be strongly 
dependent on sea age, with fully developed seas generally 
exhibiting a repeatable, single-valued mapping. This is 
demonstrated by the RMS difference between CYGNSS 
retrieved winds and coincident NWP matchups. As shown in 
Fig. 10, the RMS difference is between 2 and 3 m/s for NWP 
wind speeds below 15 m/s, then begins to rise in conditions 
that are more likely to include partially developed seas. For 
the young seas with limited fetch that are more typical of 
conditions in and near tropical cyclones, coincident matchups 
with airborne SFMR measurements indicate significantly 
higher values for the o and LES measurements than are 

observed in the fully developed seas cases, given the same 
wind speed. This general trend continues for matchups near 
the inner core of the tropical cyclones, at wind speed values 
which are above those reported by NWP models.  

A detailed assessment and characterization of the 
performance of a CYGNSS wind speed retrieval algorithm 
based on the GMF developed here is reported in [30]. To 
evaluate performance below 20 m/s, a large (~30 million) 
population of retrieved winds using the FDS GMF is 
compared to near-coincident winds reported by ECMWF. The 
RMS difference between them is found to be 2.0 m/s and the 
component of that difference due to uncertainty in the 
CYGNSS wind speed retrieval is estimated to be 1.4 m/s. 

 

 
Fig. 17. Representative YSLF GMFs for the Level 1 observables o (top) and
LES (bot) at incidence angles of 10, 15, …, 55 deg. The dependence on
incidence angle is more pronounced at higher wind speeds with both
observables. 

 
Fig. 18. Coincident hurricane overpasses by CYGNSS and underflights by the
NOAA P-3 hurricane hunter aircraft of: (a)Hurricane Maria on 24 Sep 2017,
1817 UTC; (b) Hurricane Maria on 23 Sep 2017, 1807 UTC); (c) Hurricane
Maria Coincident Overpass on 15 Sep 2017, 1852 UTC); and (d) Hurricane
Harvey on 25 Aug 2017, 1346 UTC. Four wind products are shown: CYGNSS
FDS and YSLF retrievals, Stepped Frequency Microwave Radiometer (SFMR)
on the P-3 aircraft, and merged numerical weather predictions by ECMWF
and GDAS models. 
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Above 20 m/s, performance is evaluated by comparisons 
between winds retrieved using the YSLF GMF and near-
coincident winds measured by the SFMR instrument on the P-
3 hurricane hunter aircraft during eyewall penetrations. In this 
case, the population of intercomparisons contains 674 
samples. The RMS difference between samples is found to be 
6.5 m/s and the component of the difference ascribed to 
uncertainty in the CYGNSS retrievals is 5.0 m/s. The 
significantly larger uncertainty in CYGNSS retrievals at high 
wind speeds is believed to result from two primary causes. 
One is the decrease in sensitivity of the L1 observables to 
changes in wind speed as the winds increase. This is illustrated 
in Fig. 16 by the decrease in slope of both the FDS and YSLF 
GMFs as wind speed increases. A second cause for the 
increased retrieval uncertainty at high winds is the sensitivity 
of the L1 observables to sea state conditions not directly 
related to wind speed – in particular, to sea age or fetch length 
in and near tropical cyclones. 

The multi-valued dependence on wind speed can be 
explained by considering the general relationship between 
GNSS-R measurements and sea state, and the relationship 
between the sea state at a particular location and the local 
wind speed there. In general, local winds tend to generate 
surface roughness nearly instantaneously at the smaller, 
capillary, wavelength end of the surface height spectrum. The 
influence of winds on the longer wavelength, swell, portion of 
the spectrum takes longer to develop, both in time and in fetch 
length. For this reason, young seas in limited fetch conditions 
will tend to have a smaller long wave portion of their 
spectrum. In fully developed seas, the wind speed has 
sufficient time to influence the full roughness spectrum and 
the relationship between capillary and swell waves is more 
consistent. This general behavior is consistent with the fact 
that the derived empirical GMFs map values for o and LES to 
higher wind speeds in young sea/limited fetch conditions than 
in fully developed seas. 

The existence of multiple GMFs presents implementation 
challenges for a wind speed retrieval algorithm in terms of 
deciding which one to use and under what conditions. Use of 
the FDS version appears to perform well in most cases away 
from major storms. Likewise, the YSLF version performs well 
with most coincident hurricane overpass cases, but not all. The 
use of a single non-FDS GMF should be considered an 
approximation to the true dependence of the GMF on sea age 
or fetch length. It reflects an effective average of the 
relationship between L1 observables and sea state across the 
young seas/limited fetch conditions that were present in the 
2017 Atlantic hurricanes from which the GMF was derived. A 
more accurate accounting for the departure from a fully 
developed sea state might, for example, use a fetch-dependent 
parametrization of the YSLF GMF, or it might modify the L1 
observables based on sea age or fetch length in order to 
estimate an effective FDS values. These are possible 
improvements that are under consideration for future 
development of the GMF.  

Rather than attempting to make corrections to the wind 
speed retrieval algorithm, to account for the sensitivity of the 

L1 measurements to other aspects of the sea state than those 
directly forced by local wind speed, an alternative approach 
might be to directly assimilate the L1 measurements into a 
coupled wind/wave model that is able to predict GNSS-R 
measurements given a known sea state using an appropriate 
rough surface scattering model. Direct data assimilation has 
proven useful in other situations in which measurements are 
not uniquely determined by a single geophysical parameter, 
and this may be the case here as well. 
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